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Asymptotic methods of non-linear mechanics are used to obtain representations of the solution of 

Timo-shenko’s equation for a ball striking a rod, over the whole spectrum of the rod’s fundamental 

modes of vibration. 

IN DIMENSIONLESS notation, Timoshenko’s integral equation for the lateral impact of a ball with 
a rod [l] is 

s&)-i (T- T,)jJ(T1)&* - qp% (T)-s*L@)=O (1) 

L@)= ii 
1 

; PC71 ) shb3(2n - l)(r - 71 )ldTl 
?I=1 (2n- 1)2 0 

p = P/PO m, 7= t/t’: (2) 

where Pf and t: are the maximum 
theory [2] (with the rod replaced by 
uniquely defined by condition (2). 

We have 

dZ L@)/d? = Lcp”) 

force and duration of the impact according to Hertz’s 
a semi-bounded body); the parameters s,, . . . ,s, are 

L(p)=$ Ip(r)+ 2_ ; 
1 

3 s3 n=1 (2n - 1)6 x 

X .i p(~~)sin[s~(2n-- 1)2(7-rr)jd~, 
0 

(3) 

Primes denote differentiation with respect to r. 
The fist equality in (3) is obtained by substituting r. + r-r, before differentiation, and the 

third one by substituting the series representation of the theta-function 0,(0 I +) and then 
integrating term by term; r. is the new variable of integration. 
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We consider the case 

s3 % 1 (4) 

(the rod has low flexibility and a high-frequency spectrum of natural modes of transverse 
vibrations). 

From Eq. (1) we have s1p3” - s,r, rQ 1, and hence 

By (4), (5) and the first equality of (3) 

L;, @)= 'I,xmSO/S1)~~ @3)+ x 

OD 1 
cos[(2n - lYSJ7 + n/41, s3 * 1 

(6) 
x “5 On-- 1)2 

The derivation uses the relationship 

Differentiating Eq. (1) on the basis of (6) ( in view of rapid convergence we have retained the 
first term of the series in (6)), we obtain Duffing’s equation (with fundamental mode zero and 
without friction) 

q:),(7)ts;lq% (7)=E'c0s(s37+n/4) 

so S/l s3 
q=p'/a, EC=3/4&- - 

SJ' SF 

(7) 

The initial conditions are 

q (0) f qo = 0, q’(0) = 4; = so/s, (8) 

(the second condition follows from (5)). 
It can be shown that 

Duffing-type equation 
the high-frequency asymptotic behaviour (k+=) of the solution of a 

U” tA&(r)= GCOS(kT +a) 
(9) 

A, <A0 <A,; O<C<Gr; A,,A2, Cl >O 

(k, a, s are real numbers) with initial conditions 

u(O)=u, =o, u’(O)=uk 

is given by 

(10) 

[(s + l)WWJ- 118 +&--. ;)=T (11) 

The distance from r = 0 to r,, the latter being the first zero (or the second one if u, = 0), and 
the maximum u,,, of u(r) (Mz~z,) are given by 
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Here B(,.), B,(,.) are the beta-function and the incomplete beta-function. 
It follows from (11) and (12) that the perturbation has no effect on u(r) if one of the 

following conditions holds 

k=m, u;=o, &=n/2 (13) 

Thus, the equality g = 0 is equivalent to relations (13). The values of u, and r, may be larger 
or smaller than the unperturbed ones, depending on the signs of 4 and cosa and whether 
s < 1 or s > 1. At s = 1 there is an isochronic effect-the “frequency” R is independent of u,, 
and 6. 

Relations (11) and (12) were obtained by multiplying Eq. (9) by u’(r) and integrating from 0 
to r. Integrating by parts in the trigonometric integral, we obtain the following asymptotic 
relation, which holds as k + m 

uf2(x)- 2Gk-'sin(a tkr)u'(r)--M=O 

2Ao s+l MZU’2 - - 
G 

0 stl 
(U -u~+1)-2-u;sincr 

k 

The maximum u,,, is defined by the condition u’(r) = 0 

urn = 

(14) 

(1% 

Solving Eq. (14) for u’(r) and confining ourselves to quantities of the first order as k + m, 
we obtain a differential equation with separable variables, whose solution is 

This formula is equivalent to (11). The first equality of (12) follows from (11). 
In relation to the impact under discussion, we must assume that 

u. =qo =O, u; =q;, =so/sI, E’=G, A0 = I/sl, h =O, s=~,‘~ 

The quantity s depends on the surface curvature at the point of contact [3]. Hence 

4 
St =< K(l+ 

81 @f T/,, 
--) , 

W/d 
K =fi- 

So s3 W/IO> 

Using (12), we obtain 

(16) 

(17) 

(18) 
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where I, and rf are the durations of the impact for a rod and a half-space, respectively, i is the 
radius of inertia of the rod cross-section relative to the principal axis perpendicular to the 
velocity of the ball, r is the radius of the rod cross-section (r= d(F/@, where F is the cross- 
sectional area of the rod), R is the radius of the ball, B is the flexibility of the rod (P=Zli, 
where 1 is the length of the rod), u, is the velocity of the before impact ball, IJ is the velocity of 
longitudinal waves in the rod, and ais Poisson’s ratio (the rod and ball are assumed to be 
made of the same material). 

Note that the function q=q(r) is the superposition of high-frequency low-amplitude 
vibrations on a slow process. This follows from the formula for q’(r), derived by solving 
the quadratic equation (14). The high-frequency vibrations have actually been observed 
experimentally [4]. 

Let us assume now that 

sg 4 1 (19) 

(the rod has high flexibility and a low-frequency spectrum of natural modes of vibration). An 
approximate but simple method of solution is to use the first term in the series in L(p) and, in 
view of (19), replace the sine by its argument. Thus, an equation analogous to the equation of 
Hertz’s impact theory is obtained, so that by the known method of [2] we can find 

Pm =p”, (1 t 2m/M,)- “5, r, = (1 t 2rn/M,)-‘/s r’: (20) 

where m and MI are the mass of the ball and the rod, respectively. 
A more accurate result can be obtained if we assume, besides (19), that s,d~~til or, after 

substituting s, and s, 

(where Q is the volume of the impacting body), which is equivalent, for example, to the 
assumption that the impacting body is small. Substituting the expression for &(O I Q, obtained 
by the imaginary Jacobi transformation, into the last equation of (3) and integrating by parts in 
the inner integral, we see that the principal term in the series for t&(0 I.), is the one with zero 
summation index; on our assumption (19), all the other terms are rapidly oscillating 
exponential functions of an imaginary argument, so that their contribution to the integral with 
respect to r, is asymptotically small. 

Thus, we obtain 

(21) 

Substituting this expression into (1) we obtain an integral equation with the small parameter 
s,ds,, which can be handled by linearization of its kernel (the operator on the left of (1) is 
compact in the Banach space C [4]; similar practical methods of linearization can be found in 
[5, 61). Approximating the radical in (21) by a Chebyshev polynomial of the first kind in L’, we 
obtain, as before, a solution of Eq. (l), and hence the relations 

Pm =(l + W,)Pk, II =(l t IV,)-% ty 
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Note that in this case 

683 

S) 4 l&&4 1 

P, and t, are independent of the flexibility of the rod (i.e. of r). 
In the intermediate case 

s3 - 1 (23) 

confining ourselves to the first term of the series in (l), we approximate the sine by a 
Chebyshev polynomial of the first kind in Lz (sins,(r- 7,) - U,(s,)(z-7,), where J1() is the 
Bessel function of the first kind and first order). Proceeding as before, we obtain 

To estimate Pm and tl in (24), under the condition (23), it is convenient to use the 
representation [7] 

JI (s3)- ?- 
dG 

; l+s cos(s, + n/4) 
3 

which is asymptotically accurate as S, + 00. 
If 

s1 4 1 

i.e. if 

we can use the averaging method [8]. Averaging the integrand in the second relation of (3) 
with respect to z and differentiating (l), we obtain an autonomous differential equation which 
can be solved in closed form, e.g. by using the energy integral. 

We will solve this equation by the linearization method. The substitution 

P-*BP 
% 

t 4=P 
% 

where B is a constant depending on the specific approximation used, yields a linear equation 
whose solution is 

q = k,/k, 0-l sinor, o= 2Km(l+ Iv,) 
(2% 

n4~~B s2 
w,=- - 

120 s3 

Hence 

P,,, = [‘/,B(l + FV,)]- xF’ 
tl = (@)aK-’ y&t: 

1 
(26) 
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We shall examine the accuracy of these results in the special case of a half-space, where the solution is 

known. Since in a semibounded body W, = W, = W, = s2 =0, relations (18) (20) (22) and (25) become 

exact. Formulae (26), obtained by linearization in the case of a semibounded body, may be written in the 

form 

4 % 
71p=(-- 5B) , ‘I,= _” vf 

3 2K (27) 

where qp and qc are the ratios of the numbers P, and t1 for a semibounded body, obtained from the 

solution (25) of the linearized equation, to their exact values P,” and t,“; the relative errors of 
linearization are &=I l-q, I, At =I l-q, I. The function P”~ was linearized for the following approxi- 
mation methods: Chebyshev approximation in L”; approximation of the first and second kind in c; 
Legendre approx~ation; linear inte~olation at points 0,l. The constant B was then determined so that 

p - B#‘3. The results of the linearization are tabulated below 

B 0.855 0.889 0,900 0.934 LOO 
VP 0,952 0.925 0.920 0,889 0.847 
‘72 1,030 1.010 1.005 0,991 0.954 
aJlx 10’5 7.5 8 11 15 

At X 10” 3 1 0.5 1 5 

The ~n~urn error At = 0.5% was achieved in L” (a linearization error of the same order (0.23%) was 

obtained [9] in determining the frequency of non-linear vibrations). The largest error was obtained in 
interpolation (which makes the approximation at isolated points and not over an entire interval, as in the 
other methods [lo, 111). All the errors AJJ are greater than the corresponding Ats, owing to the improved 

accuracy of the approximation at the point r= 0 (and at the conjugate point r = 1 in the autonomous 

ball-rod system), while the quantity P, is determined at r=1/2. The minimum quantity corresponds to 

Chebyshev approximation of the second kind, which yields high accuracy at r-112 
[lo, 111. 

The methods discussed can be used to investigate lateral impact in more-complicated systems: beams, 
plates, shells, etc. In those cases, by representing the deformation due to various loads by eigenfunction 
expansions [12] one can, using Timoshenko’s method [l], derive integral equations of type (1) whose 
solutions can be investigated by the above methods. Relations (18), (20), (22), (24) and (26) will then have 

the same form. 
More-complex models of deformation, such as rheological models, may be investigated similarly; in 

linear viscoelastic systems the correspondence principle can be used to determine the one-sided Fourier 
transforms of the solutions, to introduce complex constants of elasticity, and then to invert the 

transforms. 
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